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Introduction

• M1 Abrams (AGT-1500)
• M109/M110 Self Propelled Howitzer (8V71T)
• M2/M3 Bradley (VTA-903)
• M88 Medium Recovery Vehicle (TCM-1790)
• M578 – Light Armored Recovery Vehicle (LRC) 

– (8V71T)
• M60 family (TCM-1790)
• Chaparral Missile Launcher (6V53T)
• FAASV – Fast Assault Ammunition Supply 

Vehicle (8V71T)
• M551 Sheridan Assault Vehicle (6V53T)
• Stryker (3126)

• HET Heavy Equipment Transporter (8V92TA)
• HEMTT Heavy Expanded Mobility Tactical 

Truck (8V92TA)
• PLS Palletized Loading System (8V92TA)
• 2.5 Ton Truck (LD-465/LDT-465)
• M939 5 Ton Truck (NHC 250/6CTA8.3)
• M915/M916 Line Hauler (NTC400/S-60)
• M917, M918, M919 Tractor (NTC 400)
• HMMWV (GM 6.2/6.5 IDI)
• CUCV Commercial Utility Cargo Vehicle (GM 

6.2/6.5 IDI)

COMBAT VEHICLES TACTICAL VEHICLES

LEGEND:  red: two-stroke diesel white: four-stroke diesel yellow: gas turbine



Introduction

300,000 +    tactical and combat vehicles (150 – 1500 BHP)
240,000 +    trucks – class 2 thru class 8 +  (150 – 500 BHP)
40,000   +    2-stroke powered vehicles  (200 – 500 BHP)

*FVPDS (Jan. 2000)
Fielded Vehicle Performance Data Systems

M113 Personal Carrier

PLS – Palletized Loading System

HEMTT – Heavy Expanded Mobility Tactical Truck 



Introduction

Army ground vehicles comprised of 
predominately commercially derived 
diesel engines. 



Historical Perspective on Diesel 
Combustion

• Droplet evaporation models – Tanasawa (1953) based on 
distribution function of Probert (1946)

• Injection rate/evaporation rate control model – Austen 
and Lyn (1961); “triangular burning rate model”

• Engine system simulation inclusion – Cook (1963), 
McAulay et al. (1965)

• Coupled droplet evaporation, mixing, and kinetics –
Shipinski et al. (1969)

Heat Release Nitrous Oxides 
research focus



Historical Perspective on Diesel 
Combustion

• Global mixing models – Whitehouse and Way (1970-74), Grigg and 
Syed (1970), Khan et al. (1971)

• Thermodynamic multi-zone models (predecessor to CFD)
– Bastress et al. (1971), Shahed et al. (1973), Hodgetts and Shroff

(1975), Hiroyasu and Kodata (1976), Maguerdichian and Watson 
(1978)

• Focused bulk air-fuel mixing efforts:
– Dent and Mehta (1981), Kono et al. (1985), Kyriakides et al. (1986), 

Schihl et al. (1996)
• Empirical heat release models 
– Watson (1977), Ghojel (1982), Miyamota et al. (1985), Craddock and 

Hussain (1986), Breuer (1995), Reddy et al. (1996)



Historical Perspective on Diesel 
Combustion

• Today there is STILL NOT an universally accepted 
combustion model for diesel sprays

• Previous study has shown a 1 – 10% error in fuel 
consumption for LD vehicles due combustion miss 
prediction

• Fidelity of model (0-D, 1-D, 2-D, 3-D) dependent on 
particular design issue in question



Modeling Effort – TARDEC LSCM 
(Large Scale Combustion Model)
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Modeling Effort

• Laminar flame speed fundamentals
– molecular structure, temperature, air-fuel ratio, and pressure 

dependence
– experimental measurement pitfalls

• ignition issues establishing homogeneous charge
• recent efforts (Northeastern University and Southwest Research 

Institute)

• Proposed simulation-based strategy
– matching combustion and cylinder pressure histories THROUGH 

JUDICIOUS CHOICE OF LAMINAR FLAME SPEED
• Must be physically relevant



• Two phases – premixed and mixing (diffusion) controlled
• Premixed phase: trapped mean fuel-air pockets, turbulent flame speed (injection velocity + fuel type)
• Mixing Controlled Phase: bulk mixing rate limitation, fuel injection pressure + spray formation process 

(hole size, aspect ratio, nozzle type)
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V-2I-1Type

12.519.5Compression ratio
1600 - 26001500 – 3000Speed range (rpm)

7 x 0.1906 x 0.124Nozzle geometry

600 – 1300500 – 1200Peak Injection Pressure (bar)

Shop air*Boost system

PT – MUI (big cam)HPCR Cora IIFuel system

1875300Displacement (cc)

140 x 12170 x 78Bore x stroke (mm)

Cummins V903Ford DIATA

* DIATA includes manual EGR system and swirl ratio of 2.4

Experimental Set-up : Engines



1400400Sulfur (ppm)

12.813.25Hydrogen (% wt.)

42.642.8Net Heating Value 
(MJ/kg)

4753Cetane Number

845842Density (kg/m3)

Cummins V903Ford DIATAFuel Parameter

Experimental Set-up : Fuel Effects



Results – Experimental Boundary 
Conditions

• Bulk cylinder initial conditions 
– 800 – 1000 K
– 30 – 100 bar
– Air-fuel ratio 20 – 80 

• Spray tip air-fuel equivalence ratio
– 1.3 – 2.5

• Injection velocities
– 200 – 500 m/s



• Laminar flame speed modulated 
until general heat release profile 
and mean cylinder pressures are 
‘close’ to experimental profile
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• Experimentally determined HRR profiles for small and large bore engines 
utilized to determine representative laminar flame speed

First of its kind for diesel fuel
• Study included EGR effect at light load (DIATA) : 3.6 cm/s RMS error
• Resulting Correlation ---
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• First order estimate on laminar flame speed for DF-2 
• Maybe employed within flamelet models (CFD)
• Currently utilized in TARDEC LSCM 

Conclusions
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